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Abstract  

Background: Support for the accelerated brain ageing hypothesis for mood disorders 

originates from cross-sectional studies of adults. It is therefore yet unknown whether 

differential adolescent brain maturation is associated with illness.  

Methods: This study implemented a structural MRI-based brain age prediction model to 

estimate ‘biological brain age’ for initially well young individuals (16-25) included in the 

prospective longitudinal Scottish Bipolar Family Study (SBFS), at baseline and follow-up, 

two years apart.  Groups were categorised as controls with no family history who remained 

well (C-well, n = 98) and who developed a mood disorder (C-MD, n = 13), and those at high 

familial risk who remained well (HR-well, n = 73) and who developed a mood disorder (HR-

MD, n = 38). Each individual’s brain age was compared with chronological age to derive a 

‘brain age gap estimate’ (BrainAGE), capturing deviation from typical brain maturation. 

BrainAGEs and longitudinal changes herein were compared across groups with a mixed 

effects model.  

Results: HR-well showed a delay in brain maturation at baseline compared to C-well (β = -

0.38 years, p = .035), which remained constant over time. In contrast, C-MD showed no 

initial delay but a deceleration in maturation over time (β = -1.33 years, p < .001). HR-MD 

showed a trend of an initial delay (β = -0.41 years, p=0.06) and of deceleration in brain 

maturation (β = -0.39 years, p = .07).  

Discussion: These findings suggest brain maturation differences may emerge over time on 

route to illness as a lag in maturational trajectory. Given modest sample sizes however, 

further replication is required. 

 Keywords: mood disorder, brain age prediction, brain maturation, structural MRI. 
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Maturation of the Brain in Adolescents Who Develop a Mood Disorder 

 

   Mood disorders are amongst the most prevailing psychiatric disorders, with a life-time 

prevalence of around 15%  (Kessler & Bromet, 2013). Globally, they are the greatest 

contributor to non-fatal health loss (World Health Organization, 2017). Major Depressive 

Disorder (MDD) is the most prevalent mood disorder and is characterised by episodes of low 

mood and/or loss of interest or pleasure, in combination with other psychological, behavioural 

and cognitive symptoms. Within Bipolar Disorder (BD) episodes of mood disturbances occur 

at the other side of the spectrum in the form of (hypo)manic episodes, characterised by 

symptoms such as euphoria, increase in energy, recklessness and risky behaviour; usually one 

or more depressive episodes occur as well. These often occur before the manic episode, so 

that BD initially manifests with a depressive episode. MDD and BD are known to have a 

shared genetic architecture, and as a result, individuals with a family history of BD are at risk 

of developing either mood disorder, with the absolute risk of developing MDD being at least 

twice as high as the risk of developing BD (Smoller & Finn, 2003).  

  Both MDD (Wolkowitz, Reus & Mellon, 2011) and BD (Rizzo et al., 2014) are 

proposed to be related to accelerated ageing, as biological mechanisms related to ageing, such 

as inflammation and oxidative stress, overlap with biological pathways implicated in these 

psychiatric disorders (for a review, see Sibille, 2013). Furthermore, shorter leukocyte 

telomere length (TL) is regarded as biomarker of ageing based on its association with 

oxidative stress and cellular senescence (two molecular processes thought to regulate ageing; 

for a review, see Sanders & Newman, 2013), and TL has been consistently found to be shorter 

within mood disorders subjects (Simon et al., 2006; Ridout, Ridout, Price, Sen & Tyrka, 

2015; Schutte & Malouf, 2015). 

  Moreover, mood disorders have been associated with age-related diseases, such as type 
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II diabetes (Mezuk, Eaton, Albrecht & Golden, 2008; Regenold, Thapar, Marano, Gavirneni 

& Kondapavuluru, 2003), coronary heart disease (for MDD; Pan, Sun, Okereke, Rexrode & 

Hu, 2011; Whooley et al., 2008) and obesity (for MDD; Luppino et al., 2010), and with 

increased mortality rate (Ösby, Brandt, Correia, Ekbom & Sparén, 2001; Schulz et al., 2000). 

Some of these associations remained significant when considering depression as independent 

risk factor (e.g., Mezuk et al, 2008; Schulz et al, 2000), suggesting the involvement of 

biological mechanisms in mood disorders that relate to accelerated ageing 

 Since mood disorders are considered to be disorders of the brain, this support for 

accelerated ageing raises the question of whether mood disorders are also associated 

with accelerated ageing of the brain. This question is especially pertinent due to increasing 

evidence of structural brain alterations associated with mood disorders obtained using 

structural Magnetic Resonance Imaging (MRI). Meta-analyses summarise the most 

consistently found structural brain differences associated with MDD and BD: enlarged lateral 

ventricle volume (Kempton et al., 2011) and reduced grey matter volume (GMV) in various 

brain areas (e.g., Arnone, McIntosh, Ebmeier, Munafò, & Anderson, 2011; Bora, Fornito, 

Pantelis, & Yücel, 2012; Kempton et al., 2011; Wise et al., 2017), although Ioannidis (2011) 

argues that such meta-analyses probably overestimate the structural differences due to 

publication bias and selective reporting of explorative results. The Enhancing Neuro Imaging 

Genetics through Meta-Analysis (ENIGMA) consortium (http://enigma.ini.usc.edu/) 

collaborates internationally to combine data of multiple research samples, and is therefore less 

vulnerable to publication bias. Including 35 research samples with a total of 2148 MDD 

patients, analysis by the ENIGMA MDD working group showed associations of MDD with 

thinner cortical GM in the OFC, posterior and anterior cingulate, insula and temporal lobes 

within adults, and with lower GMV in prefrontal regions and primary and higher-order visual, 

somatosensory and motor areas within adolescents (Schmaal et al., 2017). Subcortically, a 

http://enigma.ini.usc.edu/
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lower hippocampal GMV was found to be associated with MDD, greatest for recurrent MDD 

(Schmaal et al., 2016). For BD, ENIGMA results showed thinner cortical GM bilaterally in 

frontal, temporal and parietal regions (Hibar et al., 2018). Of note, many of these structural 

brain characteristics implicated in mood disorders (i.e., thinner cortex and lower GMV) are 

also related to ageing (e.g., Scahill et al., 2003), thus supporting the accelerated ageing 

hypothesis.  

  Recently, a new framework for the investigation of brain maturation and ageing in 

relation to neuropsychiatry has emerged. Such fundamental research gives insight into the 

relationship between mental disorders and the brain, increasing the understanding of the 

illnesses, and ultimately contributing to better treatment. In parallel with other measures of 

biological ageing such as the epigenetic clock (Horvath, 2013), one can study brain 

maturation within a cross-sectional design by comparing the “biological brain age”, derived 

by application of an MRI-based brain age prediction model, with the chronological age; a 

large brain age gap estimate (BrainAGE) between those would reflect delayed or advanced 

ageing. Based on this principle, researchers have developed and validated multiple 

methodologies to predict brain age, most of which apply a linear or non-linear regression 

method to grey matter brain maps, although other types of prediction models (e.g., deep 

learning based on raw T1-weighted images; Cole et al., 2017) have been applied as well (for 

an overview see: Cole, Marioni, Harris & Deary, 2018). Specifically, Relevance Vector 

Regression (RVR) has been most often implemented within previous brain age models (Cole 

et al., 2018). RVR is a sparse Bayesian alternative to Support Vector Regression (SVR) that 

does not require optimisation of hyperparameters (C, ε) through cross-validation (Tipping, 

2001). Previously, application of RVR with linear kernel has indicated the most favourable 

performance for prediction of BrainAGE when compared to various other regression methods 

(Franke, Ziegler, Klöppel & Gaser, 2010).  
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  Research that addressed the accelerated ageing hypothesis for mood disorders by 

associations with TL or with BrainAGE predominantly included adult participants. 

Koutsouleris and colleagues (2014) implemented a linear SVR model and found higher 

BrainAGE scores for adults with BD (+3.1 years; n = 57) and MDD (+4.0 years; n = 104) as 

compared to healthy control participants (n = 437). In contrast, Nenadić and colleagues 

(2017) found no differing BrainAGE scores for adults with BD (n = 22) versus healthy 

controls (n = 70) after application of a linear RVR model.  

  However, many psychiatric disorders manifest during or shortly after the transition from 

adolescence to young adulthood, and this period involves great neurodevelopmental change 

(for a review, see: de Girolamo, Dagani, Purcell, Cocchi, & McGorry, 2012). The temporal 

origins of the probable association between accelerated brain ageing and mood disorders in 

adulthood are yet unknown, but could occur during this important developmental period. A 

second, alternative hypothesis would be that mood disorder onset during adolescence and 

young adulthood is associated with delayed brain maturation instead. During adolescence, 

cubic GMV development trajectories reach their peak (e.g., Giorgio et al., 2010; Tamnes et 

al., 2010). Subsequent decreases in GMV result from “synaptic pruning”, a process that is 

thought to fine-tune neuronal connectivity and consequently enhance cognitive functioning. 

Therefore, delayed brain maturation could result in emotional instability, increasing 

vulnerability to the development of mood disorders – especially if maturation is delayed 

within brain systems involved in emotion regulation and cognitive control.  

  Only one previous cross-sectional study investigated the association between brain 

maturation and mood disorders in adolescents by application of the BrainAGE framework: 

with the use of RVR with linear kernel, Hajek and colleagues (2017) found comparable 

BrainAGE scores between adolescent and young adult subjects at high familial risk that had 

developed a mood disorder (n = 48), those who remained well (n = 48), and control subjects 
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(n = 60).  

  A longitudinal volumetric study by Whittle and colleagues (2014) showed the potential 

importance of divergence in brain maturation in either direction, as they found a moderation 

by sex in the association between amygdala GMV and depression onset. This suggests a third 

possibility for the nature of the association between brain maturation and adolescent onset of 

depression: arguably, accelerated as well as decelerated maturation may be disadvantageous, 

so that any atypical form of adolescent brain maturation trajectory could be related to 

depression onset. If so, the direction of the effect may differ over time in such a way it could 

not be captured by cross-sectional studies (such as Hajek et al., 2017).  

  Within cross-sectional studies it additionally remains unclear when the brain age gap 

emerges, and to what extent it is associated with mood disorders as predisposition, cause, or 

consequence. For instance, while Koutsouleris et al. (2014) found a more positive BrainAGE 

indicating an increased brain age for those with early onset of MDD, this does not show 

causality, nor a direction; as brain maturation may affect mood disorder onset, but mood 

disorders may also affect further ageing, the relationship between brain maturation (as 

indicated by BrainAGE) and mood disorder onset remains unknown. 

  The current study investigated this relationship between brain maturation and the 

development of mood disorder by application of the BrainAGE framework within a 

longitudinal design, starting before mood disorder onset. We used data from the Scottish 

Bipolar Family Study (SBFS), a prospective longitudinal study that included young 

individuals who were all initially well, and of whom some had a family history of BD. The 

dynamics of brain maturation trajectories were captured by changes in BrainAGE over two 

years. Recognising similarities between BD and MDD and the difficulty of differential 

diagnosis at young age, we predicted that the development of any early-onset mood disorder 

(defined as having an onset in adolescence or young adulthood) was associated with divergent 
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brain maturation trajectories showing either (i) accelerated brain maturation, or (ii) 

decelerated brain maturation, or (iii) increased individual divergence in brain maturation in 

both directions. This would be reflected by significant differences in BrainAGE over time for 

participants that developed a mood disorder as compared to those who remained well. 

Furthermore, familial risk may be expressed by a cross-sectional difference in BrainAGE at 

baseline between those with family history and those with no family history of mood disorder.  

Method 

Study Participants 

  Participants are adolescents and young adults (N = 288, age 16-25 years) recruited as 

part of the Scottish Bipolar Family Study (SBFS; for more information, see: Papmeyer et al., 

2015; Sprooten et al., 2011; Whalley et al., 2011). Participants at high familial risk of mood 

disorder, subsequently referred to as HR-participants, have at least one first-degree relative or 

two second-degree relatives with BD type-I, and are thus at increased risk of developing a 

mood disorder (both BD and MDD; Smoller & Finn, 2003). Unrelated control participants 

without family history of BD were recruited via HR-participants, and were matched to the 

HR-group by age and sex. Inclusion criteria ensured that all participants were with no 

personal history of MDD, mania or hypomania, psychosis, or any other major neurological or 

psychiatric disorder, substance dependence, learning disability, or head injury that included 

loss of consciousness, and that they were without contraindications to MRI. 

  The following exclusion criteria were applied: (i) missing MRI or age data, (ii) baseline 

scans of insufficient image or segmentation quality that could not be replaced by time2 MRI 

scans (see supplemental method), (iii) ambiguous mood disorder diagnosis, or diagnosis of 

another psychiatric disorder, and (iv) high familial risk for mood disorder without follow-up 

measurement. These criteria excluded 67 participants (see Table S1 for specification), 

reducing the sample size to a total of 222 participants at time1 (111 HR-participants). For 
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time2, data was available from 141 of these participants (83 HR-participants). This difference 

in sample size between time1 and time2 was mainly due to dropout. Table 1 provides the 

sample sizes and characteristics per group after post-study group division (see ‘comparison of 

brain maturation trajectories’).    

Procedure 

   Participants of the SBFS were invited every two years for a total of four assessments 

over six years. To ensure that all participants were initially well, participants were interviewed

  

Table 1 

 Sample sizes and characteristics per group after application of exclusion criteria and group division 

based on clinical information.  

M = Mean, SD = Standard deviation, Min = Minimum, Max = Maximum. 

Note. The HR-well group consisted of participants at high familial risk for mood disorder who 

remained well throughout the course of the study (as far as known when considering drop-out), and 

HR-MD of those at familial risk who developed a mood disorder at any point throughout the course of 

the study (either BD or MDD). Similarly, C-well refers to control participants (without familial risk) 

who remained well, while C-MD consists of control participants who developed a mood disorder. 

 C-well HR-well  HR-MD C-MD 

 Time1 Time2 Time1 Time2 Time1 Time2 Time1 Time2 

N 98 51 73 48 38 32 13 7 

Age 

M 

(SD) 

Min. 

Max. 

 

21.18 

(2.44) 

16.3 

25.6 

 

23.07 

(2.43) 

18.3 

27.6 

 

21.46 

(2.80) 

15.2 

26.6 

 

23.70 

(2.78) 

17.6 

28.1 

 

21.55 

(3.38) 

16.0 

30.0 

 

23.26 

(3.04) 

18.1 

28.1 

 

23.00 

(2.20) 

18.9 

25.8 

 

24.92 

(2.22) 

20.9 

27.4 

% Males 43.8 39.2 50.6 52.1 42.1 40.6 46.1 42.9 
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and screened with the Structured Clinical Interview for DSM-IV Axis-I Disorders (SCID;  

First, Spitzer, Gibbon & Williams, 2002). At later assessments (time2, time3, time4), the 

SCID was used to determine the presence of any mood disorder meeting diagnostic criteria at 

any time since the previous assessment. All SCID assessments were completed by trained 

psychiatrists. The participant’s age at the time of each assessment was registered in years with 

a precision of two decimals. Assessments at time1, time2 and time4 included a MRI session, 

although only time1 and time2 MRI measurements were considered within this study to 

restrict to a single scanner and avoid potential bias by the introduction of an additional 

scanner with differences in strength and acquisition method.  

  The SBFS was approved by the Research Ethics Committee for Scotland. Written 

informed consent was acquired from all participants. In addition, most participants provided 

written consent for acquisition of electronic health record linkage data in case of dropout, but 

this data was not yet available for analysis.  

MRI Data Acquisition and Pre-processing 

  Time1 and time2 MRI sessions were carried out on a 1.5 T Signa scanner (GE Medical, 

Milwaukee, USA) at the Brain Research Imaging Centre in Edinburgh. The scan protocol 

included a structural T1 weighted sequence that yielded 180 contiguous 1.2 mm coronal slices 

(matrix = 192 x 192; fov = 24 cm; flip angle 8°). MRI sessions at time4 were carried out on a 

different scanner with 3 T magnetic field strength and were therefore not considered within 

this study.   

  Pre-processing of T1 weighted scans was done in Statistical Parametric Mapping (SPM) 

version 12. Spatial registration to a reference brain and segmentation of grey matter was 

performed with the Computational Anatomy Toolbox (CAT) toolbox (version CAT12.3 

(r1318); Gaser & Dahnke, 2018), which runs on SPM12 software (see supplemental method 

for details). Insufficiently segmented scans were excluded (see supplemental method). Grey 
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matter maps (GMM) were subsequently smoothed with a Gaussian kernel (FWHM = 8 mm). 

After loading the smoothed GMM into Python version 3.5.4, voxels were resampled into 

voxels of double the original voxel size, i.e. 3 x 3 x 3 mm3. As images had already been 

smoothed, this resulted in a reduction of features without much loss of information. To ensure 

that voxels outside the brain were represented by value zero, GMM were masked with a 

threshold of 0.01. 

BrainAGE model 

  Training sample. The training sample for the brain age prediction model (n = 171) was 

based on all control participants and HR-participants that remained well (C-well and HR-well; 

see ‘comparison of brain maturation trajectories’). A model just including control participants 

was underpowered and did not reached sufficient quality of predictions (see supplemental 

method, Table S3), and since the focus of the study was to investigate whether brain 

maturation is associated with the development of mood disorders, we considered that on 

balance it was best to maximise the training sample by combining the ‘well’ groups in order 

to develop a sufficiently accurate prediction model. The training sample was equally balanced 

across time1 and time2 measurements, but in such way that only one MRI measurement per 

participant was included. Per group (C-well and HR-well), we included time2 measurements 

for 50% of the time1 sample. Individuals with the highest age at age time2 were selected in 

order to maximise the age range, and thus model accuracy; this resulted in an age range of 

15.21-28.07 years with a mean age of 22.35 years (SD = 3.00). 

  Brain age prediction. The brain age prediction model was implemented in Python 

version 3.5.4 and trained on the GMM of the training sample. Within the brain age prediction 

model, the number of features (originally all voxels within a GMM) was reduced with 

Principal Component Analysis (PCA) based on Singular Value Decomposition (SVD) without 

scaling. Following the Kaiser criterion of retaining principal components with eigenvalue 
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greater than one, 73 orthogonal components were retained (see supplemental method for 

details on the components). Subsequently, an RVR model was trained on the rotated training 

data with the use of the scikit-rvm package developed by James Ritchie (available at: 

https://github.com/JamesRitchie/scikit-rvm/archive/master.zip). The use of a linear kernel was 

preferred within our sample as the use of a radial basis function (rbf) kernel did not result in a 

significant correlation between brain age prediction and chronological age (see supplemental 

method, Table S3). The PCA rotation and RVR model based on the training sample were 

applied to all time1 and time2 GMM to predict each participants’ brain age per measurement. 

Leave-one-out training was applied in order to prevent bias in the brain age prediction of 

participants that were part of the training sample. That is, we trained separate models that 

excluded the measurement corresponding to that participant from the training sample for 

whom brain age was being predicted.  

  Calculation of BrainAGE. Further analyses were implemented in R (version 3.2.3). A 

residuals approach was used to calculate BrainAGE, i.e. the gap between brain age prediction 

and chronological age. This approach takes the residuals of regressing brain age prediction on 

chronological age within the training sample (see supplemental method for details), and is 

standardly used to derive other measures of accelerated ageing, for example in the field of 

epigenetic ageing (Chen et al., 2016; Horvath, 2013). To account for plausible sex differences 

in brain maturation and achieve more accurate BrainAGE predictions, sex was additionally 

included in our regression model. Figure 1 shows a scatterplot of training sample 

observations, including the regression lines for either sex. Resulting BrainAGE predictions 

indicated the gap between the brain age prediction and chronological age for each individual 

at each timepoint; a positive BrainAGE would reflect a relatively maturated brain, while a 

negative BrainAGE would reflect a delay in brain maturation. Changes in BrainAGE over 

time indicate a relative acceleration in brain maturation if BrainAGE becomes more positive  

https://github.com/JamesRitchie/scikit-rvm/archive/master.zip
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Figure 1. Scatterplot for the training sample that shows brain age prediction against chronological age. 

The solid black line graph (formula: 18.78 + 0.17 * chronological age) and grey line graph (formula: 

18.55 + 0.17 * chronological age) represent the regression lines for respectively males and females 

that were used to determine the “observed brain age” for each participant. The result was subsequently 

subtracted from the brain age prediction to calculate brain age gap estimate (BrainAGE). 

 

(or less negative), or a relative deceleration in brain maturation if BrainAGE becomes more 

negative (or less positive). 

 Model evaluation. Due to the rarity of such prospective adolescent data, no 

independent dataset was available for optimal evaluation of the BrainAGE model. Therefore, 

the BrainAGE model was evaluated based on brain age predictions for the training sample of 
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individuals who remained well. Ideally, a good BrainAGE model would have three important 

characteristics: (i) A positive relationship between predicted brain age and chronological age 

as indicated by a high positive correlation (and thus a high explained variance R2),                

(ii) Accurate brain age predictions, indicated by a small Mean Absolute Error (MAE) for brain 

age predictions, and (iii) No systematic over- or underestimation of brain age predictions as 

indicated by a mean brain age prediction close to the mean of chronological age. As previous 

BrainAGE research shows a wide range of methodologies, alternative models were explored 

and compared with the implemented model (see supplemental method, Table S3, Table S4). 

Results show that only a Simple Linear Regression model was roughly equivalent to the 

current model (Table S4), and order to establishing the stability of results across a different 

methodology, this model was additionally implemented as explorative analysis. 

Comparison of brain maturation trajectories 

  As the objective of this study was to investigate deviation of brain maturation 

trajectories in adolescents that developed a mood disorder, participants were divided in four 

groups based on clinical information from all four assessments (Table 1). The C-well and HR-

well group consisted respectively of control and HR-participants that remained well. Clinical 

information revealed that 38 HR-participants and 13 control participants developed a mood 

disorder (either MDD or BD) at some point during the study; these participants constituted 

respectively the HR-MD and C-MD group. Additional analyses that considered one 

heterogenous group consisting of all participants who developed a mood disorder – regardless 

whether at high familial risk or not – were also completed.   

  A mixed effects model was applied to the BrainAGE results in order to compare brain 

maturation trajectories between groups, as this type of model is able to effectively deal with 

missing values as a consequence of dropout (Gueorguieva & Krystal, 2004). The fixed effects 

were referenced by the control group time1 measurements. In order to choose an appropriate 
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model, inclusion of a random slope and intercept were both considered, and the best model 

selected by the Bayesian Information Criterion (BIC; Schwarz, 1978) was the model 

including a random intercept per subject. Within this model, the random effects on BrainAGE 

were characterised by an intercept standard deviation of 0.92 and a residual standard deviation 

of 0.69. Testing of model assumptions revealed that model residuals showed a slight deviation 

of normality as indicated by a small upward linear trend within the residuals plot. This may be 

a consequence of the relatively small sample size with restricted age range and our focussed 

recruitments method, as the current study was not population-based. Furthermore, group 

differences at time2 were explored with independent t-tests, of which p-values were adjusted 

using false discovery rate (FDR). These analyses facilitate the comparison of findings with 

results of previous cross-sectional studies.

Results 

Model evaluation 

 The Pearson correlation between brain age predictions and chronological age within the 

training sample was significantly positive with r = 0.38 (p < 0.001), albeit the explained 

variance (R2) of 14.4% was low. A mean absolute error (MAE) of 2.27 years indicated 

reasonably accurate brain age predictions. Furthermore, a comparison of the mean brain age 

prediction (M = 22.38) and mean chronological age (M = 22.35) within the training sample 

shows no systematic under- or overestimation of brain age in our model, but the variation in 

chronological age (SD = 2.89) was higher than the variation in predicted brain age              

(SD = 1.23). In conclusion, the implemented brain age prediction model showed sufficient 

performance with regard to the set quality criteria (see supplemental results for a more 

thorough discussion). 
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Comparison of brain maturation trajectories   

 Comparison at baseline. Application of the brain age prediction model and BrainAGE 

residuals approach resulted at baseline in mean BrainAGEs of 0.06 (SD = 1.27) for C-well,  

-0.32 (SD = 1.11) for HR-well, 0.41 (SD = 0.78) for C-MD, and -0.36 (SD = 1.44) for         

HR-MD (Figure 2). The fixed effects of our mixed effects model (Table 2) showed a 

significant difference in BrainAGE at baseline for HR-well participants as compared to         

C-well participants which corresponded to a relative delay in brain maturation of 0.38 years 

on average for those at familial risk who remained well. In contrast, the delay in brain  

 

Figure 2. Group means of the brain age gap estimate (BrainAGE). The error bars represent standard 

deviations. 
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Table 2 

Fixed effects of the mixed effects model applied to predict BrainAGE.  

* p < .05, ** p < .01, *** p < .001 

 

maturation at baseline of 0.41 years for HR-MD was not significant, although we highlight 

the relatively smaller sample size and greater heterogeneity in BrainAGE within this group 

(i.e., higher standard deviation) as compared to HR-well. Group means also show a positive 

BrainAGE at baseline within C-MD that was not significant when compared to C-well.  

  Brain maturation trajectories. Average brain maturation trajectories per group, 

indicated by mean change in BrainAGE over time, are displayed in Figure 2. Additionally, 

Figure 3 shows the brain maturation trajectories per participant (see also Figure S3 in 

supplemental results). The mixed effect model results (see Table 2) showed a significant 

which indicated an unexpected increase in BrainAGE over time of 0.36 years on average 

within the control group, and the mean BrainAGE trajectory for the HR-well group did not 

significantly differ from this control group brain maturation trajectory. In contrast, as shown 

by the time2*C-MD interaction effect, the route to mood disorder onset within C-MD was 

characterised by a deceleration in brain maturation of 1.33 years on average between baseline  

Fixed effect 

Value of β- 

coefficient 

Standard 

Error Df t-value     p-value 

(Intercept)  0.06 0.11 218   0.49      .62 

Time2  0.36 0.13 134   2.77      .007** 

HR-well -0.38 0.18 218 -2.13      .03* 

HR-MD -0.41 0.22 218 -1.87      .06 

C-MD  0.35 0.34 218   1.04      .30 

Time2*HR-well -0.18 0.19 134 -0.97      .33 

Time2*HR-MD -0.39 0.21 134 -1.84      .07 

Time2*C-MD -1.33 0.38 134 -3.53      < .001*** 
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Figure 3. Brain maturation trajectories per participant displayed per group, as indicated by a changing 

brain age gap estimate (BrainAGE) between time1 and time2, two years apart. Thicker lines represent 

group mean maturation trajectories. The upper left and right panel show participants who remained 

well who were without familial risk for mood disorder (C-well) or at high familial risk for mood 

disorder (HR-well), respectively. The lower panels show participants who developed a mood disorder; 

the left lower panel displays brain maturation trajectories for participants without familial risk for 

mood disorder who became ill (C-MD), while the right lower panel displays brain maturation 

trajectories for those at familial risk who developed a mood disorder (HR-MD).  
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and follow-up, relative to C-well. HR-MD showed a non-significant deceleration in brain 

maturation of 0.39 years as compared to C-well.  

  Comparison at follow-up. At follow-up, two years later, the mean BrainAGEs were 

0.39 (SD = 1.05) for C-well,  -0.12 (SD = 0.91) for HR-well, -0.59 (SD = 0.57) for C-MD, and 

-0.40 (SD = 1.17) for HR-MD (Figure 2). As HR-well showed a brain maturation trajectory 

similar to C-well, their initial delay in brain maturation relative to C-well remained at follow-

up with a size of 0.41 years (t(96.3) = 2.6, p = .02). For C-MD, the deceleration in brain 

maturation resulted in the development of a significant delay in brain maturation of 0.98 years 

on average at follow-up, relative to C-well (t(12.7) = 3.8, p = .008). Similarly, although 

deceleration of brain maturation was not significant within HR-MD, this group nevertheless 

showed a significant delay in maturation of 0.79 years on average at follow-up as compared to 

C-well (t(60.8) = 3.1, p = .008). The delay in brain maturation at follow-up did not 

significantly differ between HR-well and HR-MD (t(55.1) = 1.13, p = .32), HR-well and C-

MD (t(11.1) = 1.9, p = .13), or HR-MD and C-MD (t(19.1) = 0.6, p = .53). 

  Alternative analyses. Application of a brain age prediction model based on Simple 

Linear Regression yielded similar results, but with a significant time2*HR-MD inteaction 

effect (β = -0.71, p = .004) and no significant time2*C-MD interaction effect (β = -0.45,       p 

= .28; see Table S5 and Figure S4 in supplemental results). The results of analyses that 

included HR-MD and C-MD participants within one heterogeneous group of participants who 

developed mood disorder (MD) also showed an overall deceleration in brain maturation as 

indicated by a significant time2*MD interaction effect (β = -0.58, p = .005; see Table S6 and 

Figure S5 in supplemental results).  

Discussion

  The results of the study showed an initial delay in brain maturation within young 

individuals at high familial risk for mood disorders who remained well, as compared to those 
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with no family history of mood disorders who remained well. As brain maturation accelerated 

comparably across both groups of  individuals who remained well, the initial delay in 

adolescent brain maturation remained constant over time. In contrast, our findings indicate no 

deviating brain maturation status at the start of the study for those who were initially well and 

without family history of mood disorders, but who nevertheless developed a mood disorder 

over time. Instead, their brain maturation decelerated significantly over time demonstrating a 

slower pace of brain development, which had resulted in a cross-sectional delay in brain 

maturation two years later. Furthermore, the results show considerable within-group 

heterogeneity in brain maturation trajectories which was largest within the group of 

individuals who were at high familial risk and who also developed a mood disorder, so that 

within this group mean brain maturation trajectories were characterised by a non-significant 

initial delay in brain maturation in combination with a non-significant deceleration in brain 

maturation; at follow-up two years later, this had resulted in a more negative average 

BrainAGE indicating a significant delay in maturation. For young individuals at high familial 

risk who become ill, it may thus be that the development of mood disorders is only associated 

with a deceleration in brain maturation within a subset of individuals. Importantly, cross-

sectional results at follow-up indicated no differences in the size of the brain maturation delay 

between individuals who were at high risk and those who developed a mood disorder, 

meaning that the presence of a brain age gap was not specifically associated with illness. In 

conclusion, our findings suggest that familial risk for mood disorder is reflected by an initial 

delay in brain maturation that remains constant over time for those that remain well, while the 

development of a mood disorder may be related to the emergence of a lag maturational 

trajectory on route to illness. 

  Hajek et al. (2017) had previously investigated the same association between adolescent 

brain maturation and mood disorders cross-sectionally. Although they did not find any 
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significant differences, their results did indicate a possible trend in the same direction: a 

negative mean BrainAGE both within participants at high familiar risk who remained well, 

and within those that developed a mood disorder. On the other hand, our findings contrast the 

accelerated ageing hypothesis for mood disorders (Sibille, 2013; Wolkowitz et al., 2011), 

which was corroborated by a study on BrainAGE that predominantly included adult 

participants (Koutsouleris et al., 2014).  

  The strength of the current study is that the SBFS data allowed us to investigate 

adolescent brain maturation longitudinally over an interval of two years, thus revealing the 

dynamics of adolescent brain maturation trajectories. That development of a mood disorder 

was found to be associated with decelerated brain maturation could not have been identified 

within a cross-sectional design. Furthermore, clinical information extended this two-year 

period, as it was available for up to six years depending on continual of study participation. 

Such an extended clinical follow-up is desired to for reliable group categorisation. However, 

one should take into account that it also leads to heterogeneity within the mood disorder 

groups, because some individuals had already experienced mood disorder onset at follow-up 

while others would only experience it years later (with registration of the mood disorder at 

later clinical assessments). Moreover, as participants were initially well and matched on age 

and sex, our results are more likely to reflect disease processes related to the onset of mood 

disorders – although the possibility that our results partly reflect early disease related change 

or drug treatment effects cannot be excluded. Taken together, these study characteristics show 

the relative uniqueness of the SBFS sample within adolescent mental health research.  

  However, due to practical limitations that come with such a research design the sample 

size of the SBFS was relatively modest for the application of BrainAGE methods, which in 

turn resulted in certain important limitations. Firstly, one needs to take into consideration that 

the model was trained on all individuals who remained well including those at high familial 
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risk for mood disorder. BrainAGE slightly increased over time within the control group, 

which indicates the bias in our model that typical brain maturation would be characterised by 

the emergence of a small brain age gap. Although a BrainAGE of zero did not indicate typical 

brain maturation, this bias is unlikely to affect the investigation of the relative difference in 

BrainAGE between groups. Another limitation is that the brain age model predictions showed 

a relatively low explained variance with regards to chronological age, but the adoption of the 

BrainAGE residuals approach accounted for this suboptimal relationship and prevented the 

bias of a correlation between BrainAGE and chronological age. Although we did not have the 

possibility to validate our BrainAGE model within an independent sample, dimensionality 

reduction and sparse modelling via RVR were applied in an attempt to prevent overfitting. 

  Future research should aim to replicate the current results within a larger sample, as 

study with increased sample size will not suffer from the above limitations, enhance the 

performance of the brain age prediction model, and yield more reliable results for group 

comparisons (Button et al., 2013). Furthermore, it would allow investigation of similarities 

and differences between MDD and BD by considering these separately. More research is 

needed to establish the precise relationship between mood disorders and brain maturation, as 

well as biological and psychological mechanisms underlying this relationship.  

  Ineffective emotion regulation is one mechanism plausibly related to the development 

of mood disorders within adolescent, because it has been associated to subsequent depressive 

symptoms within multiple longitudinal studies (for a meta-analytic review see: Aldao, Nolen-

Hoeksema & Schweizer, 2010), and has therefore been implemented in many models of 

psychopathology (e.g., Hofmann, Sawyer, Fang & Asnaani, 2012; Phillips, Ladouceur & 

Drevets, 2008; Nolen-Hoeksema, Wisco & Lyubomirsku, 2008). As adolescents and young 

adults age they increasingly need to regulate their behaviour and affect in order to achieve 

long-term goals, so that insufficient regulatory capacities puts them at risk for the 
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development of a mood disorder (Steinberg, 2005). In light of this, it might be that 

deceleration in adolescent brain maturation generates an imbalance in the brain in which 

emotion regulation and cognitive control functions delay in their development. This delay 

may be reflected by anatomical immaturity within brain regions related to these functions – 

especially  within large regions of the prefrontal cortex (Philips et al., 2008). To investigate 

this hypothesis further, one could implement the BrainAGE methodology within a large 

sample to produce BrainAGEs based on the prefrontal cortex, and see if these are associated 

with the development of a mood disorder and/or (sub)clinical depressive symptoms. 

  Alternatively, one could investigate what areas of grey matter are influential for the 

brain age prediction by use of orthonormal projective non-negative matrix factorisation 

(OPNMF) of grey matter (Soritas, Resnick & Davatzikos, 2015), a method which produces 

components that represent biologically meaningful clusters within the brain (Soritas et al., 

2017). Subsequent exploration of OPNMF components contributing to the brain age 

prediction can give insight into structural changes related to brain ageing, thus increasing 

model interpretability. Previously, Varikuti and colleagues (2018) have successfully 

implemented OPNMF within a brain age prediction model for a cohort of adults and elderly. 

Similarly, one could implement OPNMF to identify crucial regions for the prediction of brain 

age within young individuals and explore local differences in brain maturation associated with 

mood disorder development. 

  Furthermore, as longitudinal clinical research often includes a relatively limited sample 

size due to practical constraints, it would be useful to explore machine learning techniques 

that expand resources and thus enhance the reliability of results. Data augmentation methods 

synthetically increase sample size by the addition of artificial training images that are 

modifications of original images. Although this does not create authentic information, it does 

often decrease overfitting. Cole et al. (2017) applied data augmentation for their brain age 



BRAIN MATURATION AND MOOD DISORDERS  24 

 

predictions by adding rotated and translated MRI images to their training sample, and this was 

indeed found to increase model performance. However, as Cole et al. (2017) developed a 

brain age prediction model based on raw T1-weighted images, the validity and utility of data 

augmentation methods when using normalised and pre-processed images within a BrainAGE 

framework is yet to be established.   
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Supplemental method 

Excluded participants 

Table S1  

Excluded participants. 

HR group = High Risk group; MRI = Magnetic Resonance Imaging; N.A. = Not Applicable  

a Obsessive Compulsive Disorder, b Low mood confirmed by General Practitioner (2x), single episode 

of psychosis, c No baseline scan, time2 scan of insufficient quality, alcohol dependence.  

Cat12 segmentation  

  The CAT12 toolbox (version CAT12.3 (r1318); Gaser & Dahnke, 2018; 

www.neuro.uni-jena.de/cat/) was used with default settings to segment the T1-weighted MRI 

scans into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF); subsequently, 

smoothed grey matter maps (GMM) were used as input for the brain age prediction model. 

With default settings, the CAT12 toolbox applies internal interpolation and Spatial-adaptive 

Non-Local Means (SANLM; Manjón, Coupe, Marti-Bonmati, Collins & Robles, 2010) as a 

pre-processing step in order to reduce noise normalisation, before the T1-weighted MRI scans 

Rationale for exclusion 

Number of excluded participants 

Control group HR-group Total 

Missing data 17 23 40 

Insufficient MRI image quality or     

     segmentation quality 
4 9 13 

Other psychiatric disorder or  

     ambiguous diagnosis 
  1a   3b 4 

High risk participant without  

     follow-up 
N.A. 9 9 

Multiple reasons 0   1c 1 

Total 22 45 67 

http://www.neuro.uni-jena.de/cat/
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are normalised to Montreal Neurological Institute (MNI) space using affine and non-linear 

registration by integration of Diffeomorphic Anatomic Registration Through Exponentiated 

Lie algebra algorithm (DARTEL; Ashburner, 2007) and Geodesic Shooting Normalisation 

(Ashburner & Friston, 2011). Segmentation is achieved by implementation of Adaptive 

Maximum A Posterior (AMAP) segmentation and Partial Volume Segmentation (PVE; 

Tohka, Zijdenbos & Evans, 2004). As a part of AMAP, Classical Markov Random Field 

(MRF; Rajapakse, Giedd & Rapoport, 1997) includes spatial information of adjacent voxels 

in the segmentation estimation.  

  After segmentation, the software provides a segmentation quality assurance in the form 

of percentage rating points (range 0-100%) for resolution, noise and bias, and a weighted 

average of these three components. A score above 70% is considered at least satisfactory. Our 

quality standards excluded segmentations with weighted average scores below 70% and/or 

resolution, noise or bias scores below 65% from analysis. Image quality of baseline scans was 

also ensured by visual inspection and exclusion of raw scans with major artefacts; this 

resulted in the additional exclusion of one scan (Figure S1). 

 

 

 

 

 

 

 

Figure S1. Middle coronal brain slice of the scan that was excluded because of insufficient image 

quality as determined by visual inspection 
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Principal Components 

  Principal Component Analysis with Singular Value Decomposition on the training 

sample data was further explored within R (version 3.2.3). Principal Components (PC) 

corresponding to an eigenvalue greater than one were retained (Kaiser criterion), and this 

resulted in 73 components with a total explained variance of 83.6%. The Pearson correlation 

between the rotated matrix components and age was significant for five components, none of 

which remained significant after False Discovery Rate (FDR) correction for multiple testing 

(n = 73, α = 0.05). The results are displayed in Table S2.  

  Voxel loadings on retained components ranged from -0.46 to 0.21. The five components 

of which the correlation was nominally significant explained 4.3% of the total variance in the 

brain and 15.2% of the relationship with age prediction; the GMM voxel loadings of these 

components were further explored. The images in Figure S2 provide an indication of the 

voxel loadings for each component in one smoothed middle axial GMM slice.  

 

Table S2  

Principal Components within the brain that significantly correlated with brain age predictions.  

 

 

 

 

* p < .05, ** p < .01 

 

 

Principal  

Component Pearson correlation r 

Uncorrected  

p-value 

12 -0.16 .02* 

13 -0.16 .04* 

16 -0.23   .002* 

17   0.16 .03* 

30 -0.17 .03* 
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Component 12                                          Component 13        Component 16 

Range (-0.017, 0.028)                               Range (-0.017, 0.020)                               Range (-0.017,0.025) 

       

Component 17               Component 30                                     GMM of participant 

Range (-0.024, 0.021)                         Range (-0.021, 0.017) 

 

Figure S2. Exploration of voxel loadings for components that significantly correlated with brain age 

predictions. Within all images, the scale is relative: the background colour represents a value of zero, 

while the blackest pixel represents the minimum (i.e., most negative) voxel loading value, and a white 

colour represents the maximum (i.e., most positive) value. The frontal lobe is facing downwards. For 

reference, the range of voxel loading values is reported with each image, as well as the GMM of one 

of the participants (lower right picture). 
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Rationale for current method 

  The implemented brain age prediction model deviates from the proposed method (in 

‘Thesis Proposal’) on the following aspects: 

• The training sample consists on both control participants and HR-well participants, as 

opposed to solely control participants. 

• The training sample measurements are balanced with regard to time1 and time2 MRI  

 scans, as opposed to including solely time1 measurements. 

• The RVR model implements a linear kernel, as opposed to a radial basis function (rbf) 

kernel.   

 The changes in methodology were necessary to ensure sufficient quality of the brain age 

prediction model, which is indicated by three important characteristics: (i) A positive 

relationship between predicted brain age and chronological age as indicated by a high positive 

correlation (and thus a high explained variance R2), (ii) Accurate brain age predictions, 

indicated by relatively small Mean Absolute Error (MAE) for brain age predictions, and (iii) 

No systematic over- or underestimation of brain age predictions as indicated by a mean brain 

age prediction close to the mean of chronological age (M = 22.35) within the sample.  

  To illustrate the necessity of the changes in the brain age prediction model described 

above, we evaluated performance of models on the criteria without each of these changes, 

while keeping all other aspects of the implemented model the same. To ensure unbiased 

comparison of model performance, criteria of all models were evaluated based on resulting 

predictions for the eventually implemented training sample. Table S3 displays the model 

evaluation results. 

 

 



BRAIN MATURATION AND MOOD DISORDERS  39 

 

Table S3  

Model evaluation for models based on previously proposed methodology.  

MAE = Mean Absolute Error; PC = Principal Components; Rbf = radial basis function.  

*** p < .001 

Note. Problematic model characteristics displayed in bold for clarity; these show the necessity for 

change in methodology, leading up to the currently implemented model. For reference, the last row of 

the table presents the performance of the model implemented in this study. The number of  principal 

components (PC) selected by the Kaiser criterion is also reported for each model as this differed 

across models. 

 

Comparison of methods 

  The current study implements RVR with a linear kernel and PCA within the brain age 

prediction model. However, several alternative methods might also be appropriate. One 

alternative model would implement RVR without dimensionality reduction, but only with 

removal of features (i.e., GMM voxels) that show no variance across all training samples. 

Furthermore, a simple linear regression model is likely to yield similar results as the current 

model. For this method, dimensionality reduction must be implemented to avoid 

multicollinearity (and consequently rank-deficiency). A third alternative method is penalised 

regression with L1 regularisation, otherwise known as least absolute shrinkage and selection 

operator (Lasso). This method reaches a sparse solution by penalisation of model coefficients. 

The λ parameter determines the penalty, and the higher the penalty, the less coefficients are 

retained within the model. This parameter is normally optimised using cross-validation. 

Change in 

methodology 

[1] Pearson 

correlation r [2] MAE 

[3] Brain age 

prediction, M Number of PC 

Training solely on    

     control sample 

      0.46*** 22.35 22.13 45 

Training with time1  

      measurements 

      0.31*** 2.52 21.44 74 

Rbf kernel 0.14 2.44 22.66 73 

Implemented model       0.38*** 2.27 22.38 73 
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  The three alternative models have been implemented in Python version 3.5.4 (for RVR 

models) or R version 3.2.3 (for Simple Linear Regression and Lasso) with default setting, 

unless otherwise specified. For Lasso, no cross-validation was applied because of our limited 

sample size; instead we considered λ values of 0.01, 0.001 and 0.0001. The alternative models 

were also evaluated according to the specified quality criteria (see ‘rationale for current 

method’), and the results are shown in Table S4.  

  The results show that our RVR with PCA model performs considerably better than RVR 

without PCA and Lasso, and comparable to Simple Linear Regression with PCA. One can see 

that Simple Linear Regression might be favourable; however, these results are explorative as 

no cross-validation was applied, and therefore the currently used method were not changed 

accordingly. However, BrainAGE calculations and group comparisons based on a linear 

regression brain prediction model were investigated exploratively to find out whether the 

group comparison results are stable across different methodologies. 

 

Table S4  

Results of model evaluations for alternative models.  

PCA = Principal Component Analysis, MAE = Mean Absolute Error, RVR = Relevance Vector 

Regression.  

** p < .01, ** p < .001. 

Note. The upper row shows the model performance for the implemented model; for clarity it is 

displayed in bold. 

Prediction method 

Implementation 

of PCA? 

[1] Pearson 

correlation r [2] MAE 

[3] Brain age 

prediction, M 

RVR Yes       0.38*** 2.27 22.38 

RVR No     0.22** 2.83 22.54 

Simple Linear Regression Yes       0.42***       2.20 22.38 

Lasso (λ = 0.01) No       0.32*** 2.43 22.30 

Lasso (λ = 0.001) No       0.34*** 2.47 22.31 

Lasso (λ = 0.0001) No 0.02 3.22 22.41 
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BrainAGE residuals approach 

  A residuals approach was applied by calculating BrainAGE based on the residuals from 

the regression model that regresses brain age prediction on chronological age and sex within 

the training sample. In other words, we fit a regression model according to the R formula 

lm(brain age prediction ~ chronological age + sex) on the training sample data which resulted 

in two regression lines corresponding to each sex (Figure 1, main body). Subsequently, for 

each participant the “observed brain age” was calculated as the point on the regression line 

corresponding to the chronological age and sex of the participant. BrainAGE was calculated 

by subtracting this “observed brain age” from the brain age as predicted by the brain age 

prediction model. This corresponds to the distance (‘residual’) of the participant’s observation 

to the training sample regression line within a scatter plot of chronological age against brain 

age prediction. The BrainAGE residuals approach takes into account the inaccuracies of 

model predictions by using the observed relationship between brain age prediction and 

chronological age. Furthermore, BrainAGE calculations are inherently uncorrelated to 

chronological age, r(170) = 0.00, p = 1. Therefore, it is considered to be more reliable than a 

simple subtraction method.   
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Supplemental Results 

 

Model evaluation: comparison with previous studies 

  The model implemented within the current study shows a Pearson correlation of 0.38 

between brain age prediction and chronological age and an MAE of 2.27 years within the 

training sample. Previous studies with a much broader age range within their sample – 

including both adolescents and elderly participants – generally achieve a Pearson correlation 

of around 0.9 and an MAE of over 4 years when predicting brain age (Cole et al., 2017; 

Schnack et al., 2016). Franke et al. (2012) included children and adolescents aged 4 to 18 

years and achieved Pearson correlations of >0.9 in combination with MAEs ranging between 

1.1 and 1.3 years within their samples. 

  In comparison to brain age prediction models within previous studies, the currently 

implemented model showed a reasonable MAE, but a substantially lower correlation between 

brain age prediction and chronological age resulting in a low explained variance. However, 

one must take into account that the current study investigates brain age within a relatively 

narrow age range, and that it is therefore considerably more difficult to achieve a high 

correlation and explained variance. While this is also the case for the study of Franke et al. 

(2012), they investigated brain age during a period in which brain maturation leads to more 

prominent anatomical changes. Therefore, as the MAE is reasonable, we argue that the 

performance of our brain age prediction model is sufficiently reliable.  
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Individual brain maturation trajectories (by chronological age) 

 

 

 

 

Figure S3. Individual brain maturation trajectories, displayed as a change in brain age gap estimate 

(BrainAGE) over a change in chronological age. Every point represents a measurement, and two 

connected points reflect BrainAGE changing over time for one participant.  
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Results with Simple Linear Regression model 

 

 

 

Figure S4. Group means of the brain age gap estimate (BrainAGE), when brain age predictions are 

obtained with a Simple Linear Regression model. The error bars represent standard deviations.
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Table S5  

Fixed effects within a mixed effects model on BrainAGEs obtained from a Simple Linear Regression 

brain age prediction model.  

* p < .05, ** p < .01 

 

 

Results for MD (combination of HR-MD and C-MD) 

Table S6  

Fixed effects within a mixed effects model on BrainAGE that included both HR-participants and 

control participants that developed a mood disorder as one heterogenous group (MD).  

* p < .05, ** p < .01  

    

 

 

Fixed effect 

Value of β-

coefficient 

Standard 

Error df  t-value p-value 

(Intercept)  0.06 0.14 218   0.43 .67 

Time2  0.40 0.15 134   2.74       .007** 

HR-well  -0.46 0.22 218  -2.12   .04* 

HR-MD -0.04 0.27 218  -0.17 .87 

C-MD  0.65 0.41 218   1.56 .12 

Time2*HR-well -0.23 0.21 134  -1.11 .27 

Time2*HR-MD -0.71 0.12 134  -2.94       .004** 

Time2*C-MD -0.45 0.42 134  -1.08 .28 

Fixed effect 

Value of β-

coefficient 

Standard 

Error df t-value p-value 

(Intercept)  0.06 0.12 219 0.49 .62  

Time2  0.36 0.13 135  2.72        .007** 

HR-well  -0.38 0.18 219 -2.12    .03* 

MD -0.22  0.20 219 -1.09  .28  

Time2*HR-well  -0.18 0.19 135 -0.95   .34 

Time2*MD  -0.58 0.20 135 -2.85         .005** 
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Figure S5. Group means of the brain age gap estimate (BrainAGE) with HR-participants who 

developed a mood disorder and control participants who developed a mood disorder considered as one 

heterogenous group (MD). The error bars represent standard deviations.
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